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MOMENTS OF A RANDOM VARIABLE ARISING FROM LAPLACIAN
RANDOM VARIABLE

TAEKYUN KIM*, DAE SAN KIM*, JONGKYUM KWON*, AND HYUNSEOK LEE*

ABSTRACT. Let X be the Laplacian random variable with parameters (a,b) =
(0,1), and let (X;);>1 be a sequence of mutually independent copies of X. In
this note, we explicitly determine the moments of the random variable };>_ ZXk—‘”
in terms of the Bernoulli and Euler numbers.

1. INTRODUCTION

The Bernoulli numbers B, and the Euler numbers E,, are respectively defined by
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The first few terms of B,, are given by:
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By =0, (k> 1).

The first few terms of E,, are given by:
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Ey=0, (k>1).

A random variable X is the Laplacian random variable with parameters a and
b(> 0), which is denoted by X ~ L(a,b), if its probability density function is given
by
@ f0) = gpe

2b
where a is the local parameter and b(> 0) is the scale parameter.

The Euler’s product expansion for the sine function is the identity

oo 2

sin 7rx X
® X _JIII(I_J'_Z>’ (x € (=o0,00)), (see [2]).

, X € (—e0,00),  (see [5,7]),

This identity was used by Euler in 1735 to give a solution of the Basel problem.
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Let X ~ L(0,1), and let (X;);>1 be a sequence of mutually independent copies
of X. In this note, we determine the moments of the random variable Y =Y | ;f(—k”
Indeed, we show that E[Y?"] = (—1)”(%&",1 +B2,), (n€N), and that all odd

moments of Y vanish (see Theorem 2.1).

2. MOMENTS OF A RANDOM VARIABLE ARISING FROM LAPLACIAN RANDOM
VARIABLE

For X ~ L(0,1), let us assume that (X;) ;> is a sequence of mutually indepen-
dent copies of the random variable X. From (4), we note that
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where £ is a positive integer and —27 <t < 27.

Thus, by (6), we get
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By (7) and (8), we get
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Therefore, by comparing the coefficients on both sides of (9), we obtain the fol-
lowing theorem.

Theorem 2.1. For X ~ L(0,1), let (X;) j>1 be a sequence of mutually independent
copies of the random variable X. Then we have

(E )] r(Emen)

E[(i;‘k’;>21] —0, (neN).

Remark 2.2. As is known, the Bernoulli and Euler numbers are related by:

and

202 1)
n+1

For example, this follows from the equation (14) of [6]. Thus, from Theorem 2.1
and (10), we have the following alternative expression:

oo 2n
o (g

k=1

(10) E,=— B, (n>0).

e 1
:(—1) 1(1—W)B2n

(] - %)‘B%L (n €N).

Thus we have

- Xk o S Xk 2n+1
EKZ%) }N\anhasn%oo, EKZ@) }:IanHL (neN).

k=1 k=1

Finally, we illustrate Theorem 2.1 by using (11).
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